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Supplementary Methods

Derivation of latent variable regularization term with multi-modal prior. When using conditional replay, because the
prior over the latent variables z is no longer the standard normal distribution, the typically used closed-form expression for the
latent variable regularization term Llatent (Eq. 5 in the main text) is no longer valid. Here we derive new expressions for Llatent

that are valid for our Gaussian multi-modal prior with a separate mode for each class.

When the input data x is labelled with a hard target y (as is the case for training data from the current task), the prior distribution
over the latent variables z reduces to the mode corresponding to class y: pχ(.|y)) =N (µy,σy2I). As before for the standard

VAE, the posterior distribution over the latent variables z for an input x is given by qφ(.|x) =N (µ(x),σ(x)2
I). In this case we

can derive a closed-form expression for Llatent as follows:
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whereby J is the dimensionality of the latent variables z (i.e., J = 100 for our experiments). The last equality is based on the
following two simplifications:
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When the input data x is labelled with soft targets ỹ (as is the case for replayed data), the prior distribution over the latent
variables z is a Gaussian mixture: pχ(.|ỹ)) =

∑Nclasses
c=1 ỹcpχ(.|c) =

∑Nclasses
c=1 ỹcN

(
µc,σc2I

)
. Now it is no longer possible to

find a closed-form expression for Llatent. Instead we resort to estimation by sampling, for which it is useful to express Llatent as
follows :

Llatent (x, ỹ;φ,χ) =DKL(qφ(.|x)||pχ(.|ỹ))

=−
∫
qφ(z|x) log
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whereby the last equality uses Eq. 2 and the reparameterization z = µ(x) +σ(x)�ε. Because of this reparameterization, the
Monte Carlo estimate of the final expectation in Eq. 4 is differentiable with respect to φ.

Traditional measures for evaluating VAE performance. In addition to the measures for evaluating generator performance
described and reported in the main text (Fig. 9), here we report the average estimated log-likelihood (Supplementary Fig. 4A)
and the reconstruction error (Supplementary Fig. 4B). Similar as in the main text, these measures are compared for different
variants of generative replay in the Class-IL scenario of split CIFAR-100. However, we note that these measures have several
issues associated with them (1, 2) and that using them to compare between VAE models at the internal level versus at the pixel
level might not be fair. Both measures were computed after the model was incrementally trained on all 100 classes and they
were averaged over all 10,000 samples in the test set.

Because we used a VAE with a deterministic decoder (see Methods in the main text), it was not possible to directly estimate
a sample’s likelihood using methods based on Monte Carlo sampling. As a workaround, we assumed a Gaussian observation
model with unit variance (i.e., samples returned by the decoder were convolved with a multivariate Gaussian, see also 3). This
way we estimated the log-likelihood of every sample in the test set using S = 100 importance samples. For models replaying
at the pixel level, the estimated log-likelihood of a sample x was given by:

llpixel(x) = log 1
S
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whereby pobs(.|x̂) =N (x̂,I) is the pixel-level likelihood defined by the Gaussian observation model given reconstructed image
x̂, p(.) is the prior distribution over the latent variables z (i.e., eitherN

(
µy,σy2I

)
for conditional replay orN (0,I) otherwise),

qφ(.|x) =N
(
µ(x),σ(x)2

I
)

is the posterior distribution over the latent variables z for input x with µ(x) and σ(x) the outputs of

the encoder network, z(x,s) is the sth importance sample from qφ(.|x) and x̂(x,s) is the reconstructed image obtained by putting
z(x,s) through the decoder network. For models replaying at the internal level, the estimated log-likelihood of a sample x was
given by:

llinternal(x) = log 1
S

S∑
s=1

p∗obs

(
h(x)|ĥ

(x,s))
p
(

z(x,s)
)

qφ
(
z(x,s)|x

) (6)

whereby p∗obs(.|ĥ) = N (ĥ,I) is the internal-level likelihood defined by the Gaussian observation model given reconstructed
internal activation vector ĥ, h(x) is the vector of internal activations obtained by putting the input image x through the convo-

lutional layers and ĥ
(x,s)

is the reconstructed internal activation vector obtained by putting z(x,s) through the decoder network
without deconvolutional layers.

The reconstruction error was calculated as the mean-squared error between the original image or internal activation vector
and its reconstructed equivalent. To obtain these reconstructions, instead of a sample from the distribution parameterized by
the output of the encoder (i.e., qφ(.|x) =N

(
µ(x),σ(x)2

I
)

), the mean µ(x) of that distribution was inputted into the decoder
network. The reconstruction error at the pixel level was given by:

MSEpixel(x) = 1
Npixels

Npixels∑
p=1

(
xp− x̂(x,-)

p

)2
(7)

whereby xp is the pth pixel of the original image x and x̂(x,-)
p is the pth pixel of x̂(x,-), which is the reconstructed image obtained

by putting µ(x) through the decoder network. The reconstruction error at the internal level was given by:

MSEinternal(x) = 1
Nunits

Nunits∑
i=1

(
h

(x)
i − ĥ

(x,-)
i

)2
(8)

whereby h(x)
i is the ith element of internal activation vector h(x) obtained by putting the original image x through the convolu-

tional layers and ĥ(x,-)
i is the ith element of ĥ

(x,-)
, which is the reconstructed vector of internal activations obtained by putting

µ(x) through the decoder network without deconvoluational layers.
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Supplementary Fig. 1 Grid searches for split MNIST. Shown are the final average test set accuracies (over all 5 tasks / based on all
10 digits) for the hyperparameter-values tested for each method. For these grid searches each experiment was run once, after which
20 new runs with different random seeds were executed using the selected hyperparameter-values to obtain the results reported in the
main text. EWC: elastic weight consolidation, SI: synaptic intelligence, XdG: context-dependent gating, None: sequential training in
standard way.
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Supplementary Fig. 2 Grid searches for permuted MNIST. Shown are the final average test set accuracies (over all 100 tasks) for
the hyperparameter-values tested for each method. For these grid searches each experiment was run once, after which 5 new runs
with different random seeds were executed using the selected hyperparameter-values to obtain the results reported in the main text.
EWC: elastic weight consolidation, SI: synaptic intelligence, BI-R: brain-inspired replay, None: sequential training in standard way.
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Supplementary Fig. 3 Grid searches for split CIFAR-100. Shown are the final average test set accuracies (over all 10 tasks /
based on all 100 classes) for the hyperparameter-values tested for each method. Note that for the task-incremental learning scenario,
combining brain-inspired replay (BI-R) with synaptic intelligence (SI) did not result in an improvement, which is why for this scenario the
performance of this combination is not reported in the main text. For these grid searches each experiment was run once, after which
10 new runs with different random seeds were executed using the selected hyperparameter-values to obtain the results reported in the
main text. EWC: elastic weight consolidation, XdG: context-dependent gating, None: sequential training in standard way.
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Supplementary Fig. 4 Traditional measures for evaluating VAE performance. For the class-incremental learning scenario on
CIFAR-100, compared are the performance of the VAE generator for standard generative replay (GR) with individual modifications
added (‘+’, left within each panel) and for brain-inspired replay (BI-R) with individual modifications removed (‘-’, right). All measures
are computed on a held-out test set after each model was incrementally trained on all 100 classes. a Average estimated negative
log-likelihood. Lower means better. b Reconstruction error. Lower means better. Each bar reflects the mean over 10 repetitions, error
bars are ± 1 SEM, individual repetitions are indicated by dots. rtf: replay-through-feedback, con: conditional replay, gat: gating based
on internal context, int: internal replay, dis: distillation.
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